CHEMICAL FOOTPRINT OF SERBIAN LIGNITE IN THE ENVIRONMENT AND IN TIME – DOES IT EXIST? (a brief guide through time and space)
DOI:
https://doi.org/10.30544/rudar3Keywords:
lignite, soil, sediments, chemical footprint, time footprintAbstract
The thermal energy capacities of the Electric Power Company of Serbia (EPS) are based on lignite, which is concentrated in two large coal/mining basins. The first is the Kostolac-Kovin basin with a total area of about 320 km2 and has about 5.7 billion tons of geological resources and lignite reserves. Coal mining has been going on for more than 150 years. Also, the Kolubara basin has an exploitable area of about 200 km2 and a total of about 4.1 billion tons of geological resources and lignite reserves. Coal mining has been going on for more than 130 years. In total, in previous years, EPS had almost 10B t of geological resources and lignite reserves in both coal mining areas. Of this, a good part of about 1.9B t has already been mined. And furthermore, there are huge amounts of coal left to be mined. In this work, we deal with the geochemical characteristics of coal seams in both coal basins and perform a comparative analysis with selected examples from Serbia and the World. What we as authors and you as readers are most interested in is whether heavy metals from coal cause a chemical footprint on the immediate or distant environment and whether they leave a mark in time. We will deal with this issue in the following chapters.
References
Achternbosch, M., Brautigam, K. R., Hartlieb, N., Kupsch, C., Richers, U., & Stemmerman, P. (2003). Heavy metals in cement and concrete resulting from the co-incineration of wastes in cement kilns with regard to the legitimacy of waste utilization. Institute für Technikfolgenabschätzung und Systemanalyse, Institut für Technische Chemie, Karlsruhe.
Arsenovic, M., Zivancevic, B., & Radojevic, Z. (2009). Research on heavy metal content in clay brick products. 4th Symposium "Recycling technologies and sustainable development," Kladovo, Serbia, 320–324.
Bakraji, E. H., Romeié, M., & Issa, H. (2006). Radioisotope X-ray fluorescence analysis of ancient pottery from Tel Kouzama site in Damascus, Syria. Annali di Chimica, 96, 2006. Società Chimica Italiana.
Brkušanin, I., & Jovanović, G. (2016). Izveštaj o ispitivanju zemljišta RB Kolubara. Zaštita na radu i zaštita životne sredine Beograd, Laboratorija za zaštitu na radu i životne sredine.
Chiarelli, N., Miriello, D., Bianchi, G., Fichera, G., Giamello, M., & Turbanti Memmi, I. (2015). Characterization of ancient mortars from the S. Niccolò archaeological complex in Montieri (Tuscany – Italy). Construction and Building Materials. Elsevier BV.
Chuncai, Z., Guijian, L., Siwei, C., Ting, F., & Paul K. S. Lam. (2014). The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant. Scientific Reports, 4, Article number: 6221.
De Luca, R., Miriello, D., Pecci, A., Domınguez-Bella, S., Bernal-Casasola, D., Cottica, D., Bloise, A., & Mirocle Crisci, D. (2015). Archaeometric study of mortars from the Garum shop at Pompeii, Campania, Italy. Geoarchaeology: An International Journal, 30, 330–351.
Franken, C., Tengis, S., Ulambayar, E., & Tumur-Ochir, B. (2020). Multi-method (XRF, FTIR, TGA) analysis of ancient bricks from Karabalgasun: A preliminary study. Proceedings of the Mongoliana Academy of Science, 60(1), 233–234.
Garcia-Martinez, M. J., Moreno, J. M., Moreno-Clavel, J., Vegrara, N., Garcia-Sanches, A., Guillamon, A., Porti, M., & Moreno-Grau, S. (2005). Heavy metals in human bones in different historical epochs. Science of the Total Environment, 348, 51–72.
Gulan, Lj., Penjišević, I., Stajić, J., Milenković, J., Zeremski, T., Stevanović, V., & Valjarević, A. (2020). Spa environments in central Serbia: Geothermal potential, radioactivity, heavy metals, and PAHs. Univerzitet u Kragujevcu.
Guler, H., Guclu, E., & Hilal, K. (2023). Heavy metals in human bones from the Roman Imperial period. Journal of Surgery & Medicine, 7(8), 463.
Guner, C., Aliyev, V., Atamturk, D., Duyar, I., & Soylemezoglu, T. (2011). Retention of Zn, Cu, Cd, Pb, and As on human bones unearthed at a Central Anatolian Early Bronze Age excavation site (Resuloğlu, Turkey). Eurasian J. Anthropol., 2(1), 27–39.
Hafez, I., Sorrentino, G., Faka, M., Cuenca-García, C., Makarona, C., Charalambous, A., Nys, K., Hermon, S. (2017). Geochemical survey of soil samples from the archaeological site Dromolaxia-Vyzakia (Cyprus) by means of micro-XRF and statistical approaches. Journal of Archaeological Science: Reports, 11, 447–462.
Hall, M., Amraatuvshin, Ch., & Erdenbat, E. (1999). X-ray fluorescence analysis of pottery from Northern Mongolia. Journal of Radioanalytical and Nuclear Chemistry, 240(3), 763–773.
Han, C., Hwanh, H., Kang, J. H., Hong, S. B., Han, Y., Lee, K., Hur, S. D., & Hong, S. (2020). Reliable ultra-trace analysis of Cd, U and Zn concentrations in Greenland snow and ice by using ultraclean methods for contamination control. Molecules, 25(11), 2519.
Hill, C. L. (2005). The Merrell locality (24BE1659) and Centennial Valley, southwest Montana: Pleistocene geology, paleontology and prehistoric archaeology. Technical Report to the Dillon Resource Office. Bureau of Land Management.
Idjouadiene, L., Mostefaoui, T. A., Djermoune, H., & Bonizzoni, L. (2019). Application of X-ray fluorescence spectroscopy to provenance studies of Algerian archaeological pottery. Academia, Special Issue Article.
Kawaha, H., Yamashita, S., Yamaoka, K., Okai, T., Shimoda, G., & Imai, N. (2014). Heavy metal pollution in ancient Nara, Japan, during the eighth century. Progress in Earth and Planetary Science, 1, Article number: 15.
Koinig, K., Shotyk, W., Lotter, A., Ohlendorf, C., & Sturm, M. (2003). 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alpine lake. Journal of Paleolimnology, 30, 307–320.
Kumar, S., Zhao, M., Zhang, H., Md Rahman, A., Luo, C., & Rahman, M. M. (2021). Distribution, contamination status and source of trace elements in the soil around brick kilns. Chemosphere, 263, 127882.
Leone, G., De Vita, A., Magnani, A., & Rossi, C. (2016). Characterization of archaeological mortars from Herculaneum. Thermochimica Acta, 624, 86–94.
Maltsev, A. S., Umarova, N. N., Pashkova, G. V., Mukhamedova, M. M., Shergin, D. L., Panchuk, V. V., Kirsanov, D. O., & Demonterova, E. I. (2023). Combination of total-reflection X-ray fluorescence method and chemometric techniques for provenance study of archaeological ceramics. Molecules, 28(3), 1099.
Maresse, G., Tucci, P., & Raickovic Savic, A. (2014). Roman pottery from Viminacium (Serbia 2nd - 3rd centuries AD): Compositional characteristics, production and technological aspects. Archaeology and Science, 10, 904:738.6(497.11)”01/02”.
Marrocchino, E., Telloli, C., Novara, P., & Vaccaro, C. (2020). Petro-archaeometric characterization of historical mortars in the city of Ravenna (Italy). IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, October 22–24, 2020, 32–37.
Marrocchino, E., Telloli, C., Cesarano, M., & Montuori, M. (2021). Geochemical and petrographic characterization of bricks and mortars of the parish church Santa Maria in Padovetere (Comacchio, Ferrara, Italy). Minerals, 11, 530.
Michalowski, A., Niedzielski, P., Kozak, L., Teska, M., Jakubowski, K., & Zólkiewski, M. (2020). Archaeometrical studies of prehistoric pottery using portable ED-XRF. Measurement, 159, 107758.
Miriello, D., Bloise, A., Crisci, G., De Luca, R., De Nigris, B., Martellone, A., Osanna, M., Pace, R., Pecci, A., & Ruggieri, N. (2018). New compositional data on ancient mortars and plasters from Pompeii (Campania, Southern Italy): Archaeometric results and considerations about their time evolution. Materials Characterization, 146, 189–203.
Merkel, S. (2022). The smelting of copper in the third millennium BC in Trentino, north-eastern Italy. Archaeological and Anthropological Sciences, 14, Article 10.
Meybeck, M., Lestel, L., Bonté, P., Moilleron, R., Colin, J. L., Rousselot, O., Hervé, D., de Pontevès, C., Grosbois, C., & Thévenot, D. R. (2007). Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPSIR approach (1950–2005). Science of the Total Environment, 375(1-3), 204–231.
Monge, G., Jimenez-Espejo, F., Garcia-Alix, A., Martinez-Ruiz, F., Matielli, N., et al. (2015). Earliest evidence of pollution by heavy metals in archaeological sites. Sci Rep, 5, 14252.
Morgenstein, M., & Redmount, C. A. (2005). Using portable energy dispersive X-ray fluorescence (EDXRF) analysis for on-site study of ceramic sherds at El Hibeh, Egypt. Journal of Archaeological Science, 32(7), 1613–1623.
Ontiveros-Ortega, E., Rodríguez-Gutiérrez, O., & Navarro, A. D. (2016). Mineralogical and physical–chemical characterization of Roman mortars used for monumental substructures on the Hill of San Antonio, in the Roman city of Italica (prov. Baetica, Santiponce, Seville, Spain). Journal of Archaeological Sciences, 7, 205–223.
Ravisankar, R., Naseerutheen, A., Chandrasekaran, A., Bramha, S. N., Kanagasabapathy, K. V., Prasad, M. V. R., & Satpathy, K. K. (2014). Energy dispersive X-ray fluorescence analysis of ancient potteries from Vellore District Tamilnadu, India with statistical approach. Journal of Radiation Research and Applied Sciences, 7(1), 44–54.
Saiano, F., Scalenghe, R., Barello, F., Ferrara, E., Fontaine, C., Caner, L., Olivetti, E., Boni, I., & Petit, S. (2015). Material sources of the Roman brick-making industry in the I and II century A.D. from IX 1 XI and Alpes Cottiae Regiones. Quaternary International, 377, 1–12.
Sarhaddi-Dadian, H., Ramli, Z., Shuhaimi, N. H., Rahman, A., & Mehrafarin, R. (2015). X-ray diffraction and X-ray fluorescence analysis of pottery shards from new archaeological survey in the south region of Sistan, Iran. Mediterranean Archaeology and Archaeometry, 15(3), 45–56.
Stanković, M., Krstić, N., Đorđević, D., Anastasijević, N., Mitić, V., Topličić-Ćurčić, G., & Momčilović-Petronijević, A. (2019). Chemical analysis of mortars of archaeological samples from Mediana locality, Serbia. Science of Sintering, 51(3), 233–242.
Stefanović, P., Radovanović, P., Perković, B., et al. (2008). Laboratorijske analize uglja reprezentativnih uzoraka uglja Kolubarskog basena. Izveštaj NIV-ITE 369, Institut za nuklearne nauke Vinča, Beograd.
Tepić, M., & Pergal, M. (2018). Izveštaj o ispitivanju br. 24.1-0603/18-03 RB Kolubara. Zaštita na radu i zaštita životne sredine Beograd, Laboratorija za zaštitu na radu i životne sredine.
Yousfi, R., El Ouear, Z., Dahri, N., Ouddane, B., & Rigane, H. (2019). Evaluating the heavy metals-associated ecological risks in soil and sediments of a decommissioned Tunisian mine. Polish Journal of Environmental Studies, 28(4), 2981–2993.
Zuliskandar, R., Nik Hassan, S., Nik Abdul, R., Abdul Latif, S., Muhammad, R., Sharifah, Z., Syed, Z., & Hossein, S. D. (2014). X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis of ancient bricks from Sungai Batu Temple (site SB1), Bujang Valley, Kedah, Malaysia. Journal of Food, Agriculture & Environment, 12(3-4), 360–364.
Vučković, B., Radovanović, B., Životić, D. (2022). Mikroelementi u kvartarnim sedimentima i lignitu Kostolačko-Kovinskog ugljonosnog basena, istočna Srbija – odabrani primeri. XVIII Kongres Geologa Srbije 2022, Knjiga Izvoda.
Vučković, B., Radovanović, B., Matić, V., Glamočanin, L., Radić, B., Eraković, K., Životić, D. (2022). Rezultati geoloških istraživanja lignita kostolačko-kovinskog ugljonosnog basena – geološke i morfostrukturne karakteristike. XVIII Kongres Geologa Srbije 2022, Knjiga Izvoda.
Vučković, B., Milinković, I. (2023). Horizontal and vertical distribution of heavy metals (Cu, Pb, Zn) in lignites of Kostolac-Kovin Lignite Basin, Eastern Serbia. XIV Simpozijum sa međunarodnim učešćem Rudarstvo 2023, Zlatibor, Serbia, p. 124–133. ISBN 978-86-80420-27-1.